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Quantum refrigeration cycles using spin-12 systems as the working substance
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The cycle model of a quantum refrigerator composed of two isothermal and two isomagnetic field processes
is established. The working substance in the cycle consists of many noninteracting spin-1

2 systems. The per-
formance of the cycle is investigated, based on the quantum master equation and semigroup approach. The
general expressions of several important performance parameters, such as the coefficient of performance,
cooling rate, and power input, are given. Especially, the case at high temperatures is analyzed in detail. The
results obtained are further generalized and discussed, so that they may be directly used to describe the
performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum
characteristics of the quantum Carnot refrigerator are derived simply.
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I. INTRODUCTION

Quantum cycles are of much importance not only
theory but also in practice. The investigation relative
quantum cycles has attracted a good deal of attention
recent years, the performance of quantum heat engines
been intensively studied@1–6# and the cycle models of quan
tum refrigerators have also been proposed@1,7–9#. Many
conclusions have been obtained.

Similar to classical thermodynamic cycles, quantu
cycles may have other typical cycle models, such as
Stirling cycle, Ericsson cycle, Brayton cycle, etc., besides
Carnot cycle. It is well known that the performance of t
Carnot cycle is independent of the property of the work
substance, while the performance of other cycles is, in g
eral, dependent on the property of the working substa
@10–12#. This conclusion is still true for quantum cycles. Th
working substance in a quantum cycle may be the spin
tems, harmonic oscillator systems, ideal quantum gases,
so on. For different working substances, the performanc
the cycle will be different. Thus, the property of the workin
substance must be analyzed when the performance of a q
tum cycle is studied.

In the present paper, the property of a spin-1
2 system is

given, based on the quantum master equation and semig
approach. The performance of the quantum refrigera
cycle composed of two isothermal and two isomagnetic fi
processes is analyzed. The regenerative characteristics o
cycle are discussed. The important performance parame
such as the coefficient of performance, cooling rate, po
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input, and the temperatures of the working substance in
isothermal processes are optimized.

II. FIRST LAW OF THERMODYNAMICS IN A SPIN- 1
2

SYSTEM

First of all, we consider a quantum system with a ma
netic momentM placed in a magnetic fieldB. The direction
of the magnetic fieldB is chosen constant and along th
positive z axis. The magnitude of the magnetic field ca
change over time, but is not allowed to reach zero. T
Hamiltonian of the interaction between the magnetic mom
M in the quantum system and the magnetic fieldB is given
by @13,14#

Ĥ~ t !52M•B52mBS•B52mBBz~ t !Ŝz , ~1!

wheremB is the Bohr magnetron,S is a spin angular momen
tum, \5h/(2p), andh is the Planck constant. Throughou
this paper we adopt\51 and definev(t)52mBBz(t) for
simplicity. v is positive since the spin angular momentu
and magnetic moment are in opposite directions. Thus,
Hamiltonian of an isolated single spin-1

2 system in the pres-
ence of the fieldv(t) may be expressed as

Ĥ~ t !5v~ t !Ŝz . ~2!

As described in Ref.@14#, one can refer tov rather thanBz
as ‘‘the field.’’ The internal energy of the spin-1

2 system is of
the expectation value of the Hamiltonian, i.e.,

E5^Ĥ&5v~ t !^Ŝz&5vS. ~3!
d.
©2002 The American Physical Society45-1
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Based on the statistical mechanics, the expectation valu
the spin angular momentumSz is expressed by the following
relation

S5^Ŝz&52 1
2 tanh~bv/2!, ~4!

where2 1
2 ,S,0.

It is assumed that the spin-1
2 system is not only coupled

mechanically to the given ‘‘magnetic field’’v(t), but also
coupled thermally to a heat reservoir at temperatureT. Based
on the semigroup formalism@14,15#, the equation of motion
of an operator in the Heisenberg picture is given by the qu
tum master equation@15–18#, i.e.,

dX̂

dt
5 i @Ĥ,X̂#1

]X̂

]t
1LD~X̂!, ~5!

where

LD~X̂!5(
a

ga~V̂a
1@X̂,V̂a#1@V̂a

1 ,X̂#V̂a! ~6!

is a dissipation term and originates from a thermal coupl
of the spin to a heat reservoir,V̂a andV̂a

† are operators in the
Hilbert space of the system and are Hermitian conjuga
andga are phenomenological positive coefficients. Substit
ing X̂ in Eq. ~5! by Ĥ and using Eq.~3!, one can obtain the
rate of change of the internal energy as

dE

dt
5

d

dt
^Ĥ&5K ]Ĥ

]t L 1^LD~Ĥ !&5
dv

dt
S1v

dS

dt
. ~7!

Comparing Eq.~7! with the time derivative of the first law o
thermodynamics

dE

dt
5

dW

dt
1

dQ

dt
, ~8!

one can easily find that the instantaneous power is@19–21#

P5
dW

dt
5K ]Ĥ

]t L 5
dv

dt
S ~9!

and the instantaneous heat flow is

dQ

dt
5^LD~Ĥ !&5v

dS

dt
. ~10!

It is thus clear that for a spin-1
2 system, Eq.~7! gives the time

derivative of the first law of thermodynamics@16–20#.

III. A QUANTUM REFRIGERATION CYCLE

Figure 1 shows a schematic diagram of a quantum ref
eration cycle, which is composed of two isothermal and t
isomagnetic field processes. This cycle is a microscopic a
log of the Ericsson refrigeration cycle@12,22#. For the con-
venience of writing, ‘‘temperature’’ will refer tob rather than
T, whereb51/T andT is the absolute temperature in ener
03614
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units. In the isothermal processes, the working substanc
coupled to the hot reservoir at constant ‘‘temperature’’bh
and the cold reservoir at constant ‘‘temperature’’bc , respec-
tively. Q1 and Q2 represent the amounts of heat exchan
between the working substance and the heat reservoirs
ing the two isothermal processes, respectively. Due to fin
rate heat transfer between the working substance and the
reservoirs, the ‘‘temperatures’’ of the working substance
two isothermal processes are different from those of the h
reservoirs. They are, respectively, given byb1 and b2 and
there is a relation,b2>bc.bh>b1 . In the isomagnetic field
processes, a regenerator is often used to improve the pe
mance of the cycle.Qbc and Qda represent the amounts o
heat exchange between the working substance and the re
erator during the two isomagnetic field processes.v1 andv2
represent the high and low ‘‘magnetic field,’’ respectively.

IV. REGENERATIVE CHARACTERISTICS

Using Eqs.~4! and~10!, we can calculate the amounts o
heat exchange in the various processes as

Q15E
a

b

vdS

52
1

2
v1 tanh~b1v1/2!1

1

2
v2 tanh~b1v2/2!

1
1

b1
lnFcosh~b1v1/2!

cosh~b1v2/2!G , ~11!

Q25E
c

d

vdS

52
1

2
v2 tanh~b2v2/2!1

1

2
v1 tanh~b2v1/2!

1
1

b2
lnFcosh~b2v2/2!

cosh~b2v1/2!G , ~12!

FIG. 1. The S-v diagram of a spin-12 Ericsson refrigeration
cycle, where the unit ofv is joules.
5-2
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Qbc5v1~Sc2Sb!

5v1@2 1
2 tanh~b2v1/2!1 1

2 tanh~b1v1/2!#, ~13!

and

Qda5v2~Sa2Sd!

5v2@2 1
2 tanh~b1v2/2!1 1

2 tanh~b2v2/2!#, ~14!

whereSa , Sb , Sc , andSd are the mean values of the sp
angular momentum ina, b, c, andd states, respectively. Us
ing Eqs.~11!–~14!, we obtain the work input per cycle as

W5uQ11Q21Qbc1Qdau

5U 1

b1
ln

cosh~b1v1/2!

cosh~b1v2/2!
2

1

b2
ln

cosh~b2v1/2!

cosh~b2v2/2!
U. ~15!

From Eqs.~13! and~14!, one can find that the net amou
of heat transfer between the working substance and the
generator during the two isomagnetic field processes is
termined by

DQ5Qbc1Qda

5
v1

2
@ tanh~b1v1/2!2tanh~b2v1/2!#

1
v2

2
@ tanh~b2v2/2!2tanh~b1v2/2!#. ~16!

It is seen from Eq.~16! that there are three possible cases:~a!
DQ.0, ~b! DQ50, and ~c! DQ,0. When DQ,0, the
amount of heatQbc flowing into the regenerator in one re
generative process is larger than that ofQda flowing from the
regenerator in the other regenerative process. The redun
heat in the regenerator per cycle must be released to the
reservoir in a timely manner. This results in the reduction
the amount of refrigeration fromQ2 to Qc . If not, the tem-
perature of the regenerator would be changed such tha
regenerator would not operate normally. Similarly, wh
DQ.0, the amount of heatQbc flowing into the regenerato
in one regenerative process is smaller than that ofQda flow-
ing from the regenerator in the other regenerative proc
The inadequate heat in the regenerator per cycle mus
compensated from the hot reservoir in a timely mann
while the amount of refrigerationQ2 is unvarying. When
DQ50, the parametersb and v may not be chosen arbi
trarily. They must satisfy a certain relation. In general, t
quantum refrigeration cycle, which is composed of two is
thermal and two isomagnetic field processes and wh
working substance consists of noninteracting spin-1

2 systems,
may not possess the condition of perfect regeneration.

According to the regenerative characteristics mentio
above, the unified expression for the amount of refrigerat
per cycle may be given by
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Qc5Q22duDQu

5dFv1

2
tanh~b1v1/2!2

v2

2
tanh~b1v2/2!G

1
1

b2
ln

cosh~b2v2/2!

cosh~b2v1/2!
1~12d!Fv1

2
tanh~b2v1/2!

2
v2

2
tanh~b2v2/2!G , ~17!

whered51 whenDQ,0 andd50 whenDQ.0.

V. TIME EVOLUTION OF THE SPIN ANGULAR
MOMENTUM AND CYCLE PERIOD

In order to calculate the time of the heat-exchange p
cesses, one must solve the equation of motion that de
mines the time evolution of the spin angular momentum. F
a spin system,V̂a are chosen to be the spin creation a
annihilation operators:Ŝ15Ŝx1 iŜy and Ŝ25Ŝx2 iŜy , and
Ĥ5vŜz . SubstitutingŜ1 , Ŝ2 , Ĥ, andX̂5Ŝz into Eq. ~5!,
one can prove@14# that

dS

dt
52a exp~qbv!$2@11exp~bv!#S1@exp~bv!21#% ,

~18!

wherea.0 and21,q,0. Solving Eq.~18!, one can obtain
the expression of time evolution as

t52
1

a Esi

Sf dS

exp~qbv!$2@11exp~bv!#S1exp~bv!21%
,

~19!

whereSi andSf are the initial and final values ofS along a
given pathS(b,v). Equation~19! is a general expression o
time evolution for a spin-12 system coupling with the hea
reservoir and the external magnetic field.

Substituting S(v)52 1
2 tanh(b1v/2), b5bh , Si

5Si(b1 ,v2), andSf5Sf(b1 ,v1) into Eq.~19!, one can ob-
tain the time of the high-temperature isothermal process

t15
b1

2a Ev2

v1
$exp~qbhv!@exp~bhv!2exp~b1v!#

3@11exp~2b1v!#%21dv. ~20!

Similarly, substitutingS(v)52 1
2 tanh(b2 v/2), b5bc , Si

5Si(b2 ,v1), andSf5Sf(b2 ,v2) into Eq.~19!, one can ob-
tain the time of the low-temperature isothermal process a

t25
b2

2a Ev1

v2
$exp~qbcv!@exp~bcv!2exp~b2v!#

3@11exp~2b2v!#%21dv. ~21!

In two isomagnetic field processes, the ‘‘temperature’’
the working substance changes fromb1 to b2 or from b2 to
b1 , so they need a non-negligible time compared with
5-3
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time of the isothermal processes. SubstitutingS(b)5
2 1

2 tanh(bv1/2), b5b r , Si5Si(b1 ,v1), and Sf
5Sf(b2 ,v1) into Eq. ~19!, one can obtain the time of on
isomagnetic fieldv1 process as

t35
v1

2a Eb1

b2
$exp~qb rv1!@exp~b rv1!2exp~bv1!#

3@11exp~2bv1!#%21db, ~22!

where b r is the ‘‘temperature’’ of the regenerator andb r
.b because heat is transferred from the working substa
to the regenerator in the isomagnetic fieldv1 process. Simi-
larly, substituting S(b)52 1

2 tanh(bv2/2), b5b r8 , Si

5Si(b2 ,v2), andSf5Sf(b1 ,v2) into Eq.~19!, one can ob-
tain the time of another isomagnetic fieldv2 process as

t45
v2

2a Eb2

b1
$exp~qb r8v2!@exp~b r8v2!2exp~bv2!#

3@11exp~2bv2!#%21db , ~23!

where b r8 is the ‘‘temperature’’ of the regenerator andb r8
,b because heat is transferred from the regenerator to
working substance in the isomagnetic fieldv2 process.

So far we have calculated the times of two isothermal a
two isomagnetic field processes. Consequently, the cycle
riod is given by

t5t11t21t31t4 . ~24!

VI. OPTIMIZATION ON PERFORMANCE PARAMETERS

The coefficient of performance, cooling rate, and pow
input are three of the important performance paramet
which are often considered in the optimal design and th
retical analysis of refrigerators. Using Eqs.~15!, ~17!, and
~24!, one can find that the coefficient of performance, co
ing rate, and power input may be, respectively, expresse

«5
Qc

W
5H dFv1

2
tanh~b1v1/2!2

v2

2
tanh~b1v2/2!G

1
1

b2
ln

cosh~b2v2/2!

cosh~b2v1/2!
1~12d!Fv1

2
tanh~b2v1/2!

2
v2

2
tanh~b2v2/2!G J Y F 1

b1
ln

cosh~b1v2/2!

cosh~b1v1/2!

1
1

b2
ln

cosh~b2v1/2!

cosh~b2v2/2!G , ~25!

R5
Qc

t
5H dFv1

2
tanh~b1v1/2!2

v2

2
tanh~b1v2/2!G

1
1

b2
ln

cosh~b2v2/2!

cosh~b2v1/2!
1~12d!Fv1

2
tanh~b2v1/2!

2
v2

2
tanh~b2v2/2!G J Y ~ t11t21t31t4!, ~26!
03614
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P5
W

t
5

1

b1
ln

cosh~b1v2/2!

cosh~b1v1/2!
1

1

b2
ln

cosh~b2v1/2!

cosh~b2v2/2!

t11t21t31t4
. ~27!

Using Eqs.~25!–~27!, one can, in principle, optimize thes
important performance parameters of the quantum refrig
tion cycle.

At very low temperatures,b2→` so that tanh(b2v2/2)
→1 and tanh(b2 v1/2)→1. In such a case, the amount
refrigeration per cycleQ250 and the refrigerator has lost it
role.

At high temperatures,bv!1. The results obtained abov
may be simplified. For example, Eqs.~11!–~16!, ~20!–~23!,
and ~25! may be, respectively, simplified as,

Q15b1~v2
22v1

2!/8, ~28!

Q25b2~v1
22v2

2!/8, ~29!

Qbc5v1
2~b12b2!/4, ~30!

Qda5v2
2~b22b1!/4, ~31!

W5~b22b1!~v1
22v2

2!/8, ~32!

DQ5~v1
22v2

2!~b12b2!/4,0, ~33!

t15
b1

4a~bh2b1!
lnS v1

v2
D , ~34!

t25
b2

4a~b22bc!
lnS v1

v2
D , ~35!

t35
1

4a Eb1

b2 db

b r2b
, ~36!

t45
1

4a Eb2

b1 db

b r82b
, ~37!

and

«5
2b12b2

b22b1
. ~38!

It should be noted that the ‘‘temperatures’’b r andb r8 of the
regenerator in two isomagnetic field processes are not c
stant and vary with time. If there is not any additional a
sumption, Eqs.~36! and ~37! cannot be calculated furthe
One of the simplest assumptions is that bothb r2b andb r8
2b are kept constant. Then, the times of two isomagne
field processes may be expressed as

t31t45g~b22b1!, ~39!

whereg is a proportional constant, which is independent
temperature. It will be seen from another assumption giv
below that this simple assumption is reasonable.
5-4
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In general, the larger the temperature difference of
working substance in the two isothermal processes is,
larger the amount of regeneration and the longer the tim
the regenerative processes will be. When the time of
regenerative processes is assumed to be directly proport
to the amount of regeneration, the time of two isomagne
field processes may be written as

t31t45§~ uQbcu1Qda!5§
v1

21v2
2

2
~b22b1!5g~b22b1!,

~40!

where§ is also a proportional constant, which is independ
of temperature. Equations~39! and ~40! just show that the
two assumptions mentioned above are equivalent to e
other.

Using Eqs.~34!, ~35!, and ~39!, one obtains the cycle
period as

t5
b1

4a~bh2b1!
lnS v1

v2
D1

b2

4a~b22bc!
lnS v1

v2
D

1g~b22b1!. ~41!

Substituting Eq.~41! into Eqs.~26! and ~27! gives

R5
b~2b12b2!

d@b1 /~bh2b1!1b2 /~b22bc!#1g~b22b1!
~42!

and

P5
b~b12b2!

d@b1 /~bh2b1!1b2 /~b22bc!#1g~b22b1!
, ~43!

whereb5(v1
22v2

2)/8 andd5 ln(v1 /v2)/4a.
Using a refrigerator, one always wants to obtain a cool

rate as large as possible for a given power input. For
purpose, we introduce the Lagrangian

L5R1lP5
b@~22y!1l~y21!#

d@1/~bh2b1!1y/~yb12bc!#1g~y21!
,

~44!

where l is the Lagrange multiplier andy5b2 /b1 . Using
Eq. ~44! and the external condition]L/]b150, we can ob-
tain an optimal relation

b15
bc1ybh

2y
. ~45!

Substituting Eq.~45! into Eqs.~38!, ~42!, and~43!, we find
that the fundamental optimal relations between some imp
tant parameters and the coefficient of performance are
spectively, given by

b15bhF12
« r2«

2«c~«12!G , ~46!

b25bcF11
« r2«

2~«11!~«c11!G , ~47!
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R5
Bbh«~« r2«!

«c~«11!~«12!1Dbh~« r2«!
, ~48!

and

P5
Bbh~« r2«!

«c~«11!~«12!1Dbh~« r2«!
, ~49!

whereB5b/4d, D5g/4d, «c5bh /(bc2bh) is the coeffi-
cient of performance of a Carnot refrigerator, and« r
5(2bh2bc)/(bc2bh) is the coefficient of performance o
a magnetic Ericsson refrigerator@10,22#.

Using Eqs.~46!–~49!, we can plot theb i /b j -« ~i 51,2
and j 5h,c!, R* -«, P* -«, andR* -P* characteristic curves
as shown in Figs. 2–5, whereR* 5R/(Bbh) and P*
5P/(Bbh) are the dimensionless cooling rate and power
put, respectively. It is seen from Fig. 3 or 5 that there exi
a maximum cooling rate. Starting from Eq.~48!, one can
prove that when the coefficient of performance

FIG. 2. Theb1 /bh-« andb2 /bc-« characteristic curves.

FIG. 3. The dimensionless cooling rateR* (5R/Bbh) versus
coefficient of performance«. Dashed (Dbh50) and solid (Dbh

510) curves are presented forbc /bh51.5.
5-5
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«m5
2~2«c1Dbh« r !1@~2«c1Dbh« r !

21~«c« r13«c2Dbh!~2«c« r1D« r
2bh!#1/2

3«c1«c« r2Dbh
, ~50!
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the cooling rate attains its maximum, i.e.,

Rmax5
Bbh«m~« r2«m!

«c~«m11!~«m12!1Dbh~« r2«m!
. ~51!

In such a case, the power input and the ‘‘temperatures’’ of
working substance in two isothermal processes are given

Pm5
Bbh~« r2«m!

«c~«m11!~«m12!1Dbh~« r2«m!
, ~52!

b1m5bhF12
« r2«m

2«c~«m12!G , ~53!

and

b2m5bcF11
« r2«m

2~«m11!~«c11!G . ~54!

It is also seen from Figs. 2–5 that whenb15bh and b2
5bc , «5« r , R50, and P50. When R,Rmax, there are
two coefficients of performance for a givenR, where one is
smaller than«m and the other is larger than«m . When «
,«m , the cooling rate decreases as the coefficient of per
mance decreases. Obviously, the region of«,«m is not op-
timal for a quantum refrigerator. The optimal region of t
coefficient of performance should be

«m<«,« r . ~55!

When a quantum refrigerator is operated in this region,
cooling rate will increase as the coefficient of performan
decreases, and vice versa. It is thus clear thatRmax and «m

FIG. 4. The dimensionless power inputP* (5P/Bbh) versus
coefficient of performance«. The values of the parametersDbh and
bc /bh are the same as those used in Fig. 3.
03614
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are two important parameters.Rmax determines the uppe
bound of the cooling rate, while«m determines the allowable
value of the lower bound of the optimal coefficient of pe
formance.

It is of interest to compare the results obtained here w
those derived from a magnetic Ericsson refrigeration cyc
When the magnetic refrigerant in the Ericsson refrigerat
cycle is described by the Curie law and heat transfer betw
the working substance and the heat reservoirs obeys the
ear heat-transfer law in irreversible thermodynamics@23–
26#. The fundamental optimum relations of the magne
Ericsson refrigeration cycle are, respectively, given by@27#

T1
215Th

21F12
« r2«

~11u!«c~«12!G , ~56!

T2
215Tc

21F11S u

11uD « r2«

~«c11!~«11!G , ~57!

R5
k1Th

21«~« r2«!

~11u!2«c~«11!~«12!1k1nTh
21~«c2«!

, ~58!

and

P5
k1Th

21~« r2«!

~11u!2«c~«12!~«11!1k1nTh
21~« r2«!

, ~59!

where n is a parameter that is dependant on the magn
fields in two isomagnetic field processes but independen
temperature,u5Ak1 /k2, andk1 andk2 are the thermal con-
ductances between the working substance and the heat
ervoirs at temperaturesTh and Tc , respectively. Whenk1

FIG. 5. The dimensionless cooling rateR* versus dimensionless
power inputP* . The values of the parametersDbh andbc /bh are
the same as those used in Fig. 3.
5-6
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5k2, Eqs.~46! and~47! are identical with Eqs.~56! and~57!
and the forms of Eqs.~48! and~49! are the same as those
Eqs.~58! and~59!, respectively. Ifk1/45B andk1v/45D is
chosen further, Eqs.~48! and~49! are identical with Eqs.~58!
and~59!, respectively. The above results show clearly tha
the high temperature limit, a quantum refrigeration cycle
ing spin-12 systems as the working substance and consis
of two isothermal and two isomagnetic field processes
equivalent to a magnetic Ericsson refrigeration cycle. Th
such a cycle described in this paper may be referred to as
quantum Ericsson refrigeration cycle.

VII. DISCUSSION AND GENERALIZATIONS

~1! When the work substance is composed of a spiJ
system (J51/2,1,3/2,2, . . . ,) themean value of the spin an
gular momentum is given by@28–30#

S5^Ŝz&52JBJ~bvJ!, ~60!

where2J<S<J and

BJ~x!5S 2J11

2J D cothS 2J11

2J
xD2

1

2J
cothS x

2JD
is the Brillouin function.

At high temperatures, Eq.~60! may be simplified as

S52
J~J11!

3
bv. ~61!

Compared with Eq.~4!, the heat amount of the various pro
cesses in the cycle may be obtained by multiplying the fac
of 4J(J11)/3 in Eqs.~28!–~31!. On the other hand, usin
the method in Sec. V, one can prove@17# that the time evo-
lution of the spin angular momentum is determined by

dS

dt
522a$2S1bv@J~J11!2M #%, ~62!

where M5@J(J11)#/3. From Eqs.~61! and ~62!, we can
find that the times of the various processes are the sam
Eqs. ~34!, ~35!, and ~39!. Thus, the coefficient of perfor
mance of the quantum cycle consisting of the spin-J systems
is the same as that of the quantum cycle consisting of
spin-12 systems, while the cooling rate and power input a
4J(J11)/3 times of those of the quantum cycle consisti
of the spin-12 systems, respectively.

~2! When the regenerative time is negligible,D50. Equa-
tions ~46!, ~47!, ~53!, and~54! are still true, while Eqs.~48!–
~52! may be, respectively, simplified by

R5
Bbh«~« r2«!

«c~«11!~«12!
, ~63!

P5
Bbh~« r2«!

«c~«11!~«12!
, ~64!

«m5
221@412« r~« r13!#1/2

« r13
, ~65!
03614
n
-
g

is
s,
he

r

as

e
e

Rmax5
Bbh~« r2«m!

«c~«m11!~«m12!
, ~66!

and

Pm5
Bbh~« r2«m!

«c~«m11!~«m12!
. ~67!

~3! When the two isomagnetic field processes in the cy
are replaced by two adiabatic processes, the cycle becom
quantum Carnot refrigeration cycle. In this case,D50, Qbc
50, Qda50, Sb5Sc5S1 , Sd5Sa5S2 , and S1 and S2 are
the spin angular momentums in two adiabatic processes
spectively. In the adiabatic processes, there is not any
exchange between the working substance and the exte
heat reservoirs. The time of the adiabatic processes is o
assumed to be negligible compared with the time of the i
thermal processes. Using Eqs.~10! and ~18!, we can calcu-
late Q1 , Q2 , t1 , andt2 . In the high temperature limit, they
are, respectively, given by

Q152
2

b1
~S1

22S2
2!, ~68!

Q25
2

b2
~S1

22S2
2!, ~69!

t15
b1

bh2b1

ln~S1 /S2!

4a
, ~70!

and

t25
b2

b22bc

ln~S1 /S2!

4a
. ~71!

From Eqs.~68!–~71!, we can obtain the coefficient of pe
formance, the cooling rate, and power input as

«5
b1

b22b1
, ~72!

R5
8a~S1

22S2
2!/b2

ln~S1 /S2!@b1 /~bh2b1!1b2 /~b22bc!#
, ~73!

and

P5
8a~S1

22S2
2!~1/b121/b2!

ln~S1 /S2!@b1 /~bh2b1!1b2 /~b22bc!#
. ~74!

Using the similar method mentioned above, one can pr
that the fundamental optimum relations for a quantum C
not refrigerator are, respectively, given by

R5
2a~S1

22S2
2!

ln~S1 /S2! S 1

bc
2

«

11«

1

bh
D , ~75!

P5
2a~S1

22S2
2!

ln~S1 /S2! S 1

«bc
2

1

11«

1

bh
D , ~76!
5-7
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b15
2«bhbc

~11«!bh1«bc
, ~77!

and

b25
2~11«!bhbc

~11«!bh1«bc
. ~78!

Using the fundamental optimum relations and the sim
method mentioned above, one can further discuss the var
optimum performance characteristics of a quantum Ca
refrigerator.

The results obtained above show clearly that when
irreversibilities existing in refrigerators are taken into a
count, it is very important to find the fundamental optimu
relations of refrigerators. Using these relations, one can
veal the universal performance characteristics of refrigera
@31–33#.

~4! The above discussion only refers to a single spiJ
system. For the working substance consisting of many n
interacting spin-J systems, the coefficient of performance
still true, while the internal energy, work input, power inpu
and heat quantity can be obtained as long as the above re
are simply multiplied by the total number of spin systems

VIII. CONCLUSIONS

We have established the cycle model of a typical quan
refrigerator consisting of two isothermal and two isoma
netic field processes and using noninteracting spin-1

2 systems
rs

rs

s

d

03614
r
us
ot

e
-

e-
rs

n-

ults

m
-

as the working substance. Based on the spin theory, mo
equation of an operator, and semigroup formalism, we h
analyzed the optimal performance characteristics of
quantum refrigeration cycles and derived the concrete
pressions of several important parameters such as the co
cient of performance, cooling rate, power input, and te
peratures of the working substance in two isotherm
processes. Especially, the optimal performance of the qu
tum refrigerator in the high temperature limit is discussed
detail. The maximum cooling rate and the corresponding
rameters are calculated. The optimally operating region
the quantum refrigeration is determined. These results
rived in this paper are compared with those obtained fr
the cycle model of a magnetic Ericsson refrigerator. Ma
similarities between them are found. If some parameters
chosen reasonably, they are equivalent to each other.

The results obtained are further generalized, so that t
are also suitable for the working substance consisting of n
interacting spin-J systems. Finally, the replacement of tw
isomagnetic field processes by two adiabatic processes g
directly the cycle model of a quantum Carnot refrigerator,
that the optimal performance of the quantum Carnot refr
erator can be derived simply from the present paper.
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